
	
Integration	with	the	TurboScan	app	for	iOS.	

	
This	document	describes	a	simple	way	to	seamlessly	integrate	document	scanning	
functionality	of	TurboScan	into	other	apps.	The	approach	requires	very	little	programming	
(with	almost	all	necessary	code	snippets	provided	in	this	document).	It	uses	simple	custom	
URL	calls	and	automatic	transferring	of	resulting	image(s)	via	the	standard	Pasteboard.	
(Note	that	TurboScan	v.2.7.7	or	greater	has	to	be	installed	on	the	device.)	
	
The	user	workflow	is	very	efficient.	Once	the	user	presses	the	“scan”	button	in	the	controller	
app,	he	is	transferred	to	TurboScan’s	camera	screen,	does	the	“scanning”,	changes	some	
parameters	(if	necessary)	and	presses	the	“back”	button	that	takes	him	back	to	the	calling	
app.	The	image(s)	automatically	appear	in	the	main	app	UI.	It	takes	only	3-4	clicks	before	
user	is	back	in	the	original	app	with	the	scanned	image.	
	
The	controller	app	can	set	the	scanning	mode	it	wants	to	run	TurboScan	in	(regular	or	
SureScan	3x),	specify	if	it	needs	single	or	multipage	scanning,	and	define	the	title	to	be	put	on	
the	“back”	button	in	TurboScan.	
	

� � �	
	
	
	
	

The	API		(Objective	C	is	used	for	the	sample	code).	
	
1.	Displaying	the	“Scan”	button	in	the	controller	app	UI:		
	
First	approach:	you	only	put	the	“Scan”	button	in	your	app	if	TurboScan	is	installed	on	the	
device.	This	code	will	check	if	TurboScan	is	installed:	
	

bool installed = [[UIApplication sharedApplication] canOpenURL: [NSURL
URLWithString: @"turboscan://"]];

	
Note:	with	the	above	method	you	must	declare	the	TurboScan	URL	scheme	you	want	to	pass	
to	this	method.	Do	this	by	using	the	LSApplicationQueriesSchemes		array	in	your	Xcode	
project’s	Info.plist	file.				
	
	
Second	approach:	if	you	feel	that	TurboScan	functionality	is	valuable	enough	for	your	users,	
you	can	have	the	“Scan”or	“TurboScan”	button	always	displayed	in	your	app,	in	which	case	
you	can	check	the	“success” flag	returned	from		[[UIApplication sharedApplication]
openURL:…] (in	step	2	below).		False	means	TurboScan	is	not	installed	and	you	can	send	
user	to	TurboScan	App	Store	page	using	this	link:	
	

[[UIApplication sharedApplication] openURL:[NSURL URLWithString:
@"https://itunes.apple.com/app/turboscan-quickly-scan-
multipage/id342548956?mt=8"]];	

	 	

	
2.	Launching	TurboScan	from	the	controller	app:	
	
Use	the	following	code	and	custom	URL	specs	to	launch	TurboScan	upon	pressing	“Scan”	(in	
this	example,	the	calling	app	name	is	XpenseTracker):	
	

bool success = [[UIApplication sharedApplication] openURL:[NSURL
URLWithString:
@"turboscan://XpenseTracker?action=camera&returnURL=xpensetracker%3A%2F%2F
&multipage=no&callerName=XpenseTracker"]];

	
There	are	several	query	keys	here	(some	are	optional):	
action	 		 camera			 -	opens	camera	screen	in	single	shot	mode		

	 surescan				 -	opens	camera	screen	in	SureScan	(3x)	mode			
search								 -	opens	the	search	screen		
main								 -	opens	the	main	menu		

	
returnURL	 URL	to	re-open	the	calling	app.	Provide	any	parameters	you	need.	Please	use	

hexadecimals	for	special	characters	(like	%2F	for	slash,	etc.)	
	
multipage	 yes	 	 -	enable	multipage	scanning	

	 no	 	 -	enable	single	page	scanning	(default)	
	
format		 jpeg	 	 -	resulting	image(s)	in	JPEG	format	(default)	

	 pdf	 	 -	resulting	single	document	in	PDF	format	
	
callerName	 controller	app	name	to	be	used	as	a	title	for	the	“back”	button	(optional)	
	
	
Tip:	you	can	use	this	code	to	automatically	substitute	parameters	with	special	characters	
with	the	escaped	ones:	
	
 NSString* rfc3986EscapeChars = @":/?#[]@!$&'()*+,;=";
 NSString* escapedParameter = (NSString*)CFURLCreateStringByAddingPercentEscapes(
 NULL, (CFStringRef)myParameter, NULL,
 (CFStringRef)rfc3986EscapeChars,

kCFStringEncodingUTF8);	
	
	
	
3.	Transferring	back	the	resulting	image(s):	
	
Upon	pressing	the	“back”	button	on	top	right	in	TurboScan	(that	should	be	titled	with	the	
calling	app	name),	TurboScan	copies	one	or	more	scanned	pages	to	standard	Pasteboard.	The	
following	code	may	be	used	to	check	for	and	extract	the	JPEG	image(s)	or	a	single	
(multipage)	PDF	file	into	your	app:	
	
	
// If JPEG image format is enabled:
+ (bool)pasteboardHasImages
{
 UIPasteboard *pasteboard = [UIPasteboard generalPasteboard];

 return [pasteboard containsPasteboardTypes:[NSArray
arrayWithObjects:@"public.jpeg", @"public.png", nil]];

}
// If PDF format is enabled:
+ (bool)pasteboardHasPDFImage
{
 UIPasteboard *pasteboard = [UIPasteboard generalPasteboard];

 return [pasteboard containsPasteboardTypes:[NSArray
arrayWithObjects:@"com.adobe.pdf", nil]];

}

	
	
	
+ (void)pasteFromPasteboard
{
 UIPasteboard *pasteboard = [UIPasteboard generalPasteboard];
 NSMutableArray* imageItems = [NSMutableArray arrayWithCapacity:0];
 NSArray* arrayBoardImages = pasteboard.images;

 for(int i=0; i<arrayBoardImages.count; i++)
 {
 NSData *data = [arrayBoardImages objectAtIndex:i];
 UIImage* image = nil;
 uint8_t c = 0;

 if([data isKindOfClass:[NSData class]])
 {
 if(data == nil || data.length == 0)
 continue;

 [data getBytes:&c length:1];

 if(c != 0xFF && c != 0x89)
 continue;

 // Create thumbnail:
 image = [[UIImage alloc] initWithData:data];
 }
 else if([data isKindOfClass:[UIImage class]])
 {
 image = [[arrayBoardImages objectAtIndex:i] retain];
 data = nil;
 }
 else
 continue; // unsupported type.

 if(data == nil)
 {
 NSData* newData = [UIImageJPEGRepresentation(image, 0.4) retain];

 [imageItems addObject:newData];
 [newData release];
 }
 else
 {
 [imageItems addObject:data]; // do not release clipboard data
 [image release];
 }
 }

 // NOTE: at this point imageItems contains NSData with JPEG images to save
and use in your appllication.
 //
 // YOUR CODE HERE MAY BE SIMILAR TO THIS:

 // for(int myIndex=0; myIndex<imageItems.count; myIndex++)
 // {
 // NSString* myFilePath = @"samplePath/myFileName.jpeg";
 // [(NSData*)[imageItems objectAtIndex: myIndex] writeToFile:
myFilePath atomically:YES];
 // }

 // Once the images are saved or used, it is good to clear clipboard so user
does not get
 // unexpected clipboard content using Paste next time:

 // This clears pasteboard:
 [pasteboard setString:@""];
}

// PDF version:
+ (void)pastePDFfromPasteboard
{
 UIPasteboard *pasteboard = [UIPasteboard generalPasteboard];

 if([pasteboard containsPasteboardTypes:@[(NSString*)kUTTypePDF]])
 {
 NSData *data = [pasteboard dataForPasteboardType:(NSString *)
kUTTypePDF];
 CFDataRef myPDFData = (CFDataRef)data;
 CGDataProviderRef provider = CGDataProviderCreateWithCFData(myPDFData);

 CGPDFDocumentRef pdf = CGPDFDocumentCreateWithProvider(provider);

 // Do something with PDF document here…

 // --------
 }

 // Once the images are saved or used, it is good to clear clipboard so
user does not get
 // unexpected clipboard content using Paste next time:

 // This clears pasteboard:
 [pasteboard setString:@""];

}

� � �

Please	email	us	at		support@turboscanapp.com		if	you	have	any	questions	or	suggestions.		
	

Thank	you!	

